Exercise 104

Total online shopping during the Christmas holidays has increased dramatically during the past 5 years. In $2012(t=0)$, total online holiday sales were $\$ 42.3$ billion, whereas in 2013 they were $\$ 48.1$ billion.
a. Find a linear function S that estimates the total online holiday sales in the year t.
b. Interpret the slope of the graph of S.
c. Use part a. to predict the year when online shopping during Christmas will reach $\$ 60$ billion.

Solution

Part (a)
A linear function has the form,

$$
S(t)=m t+b
$$

Two points on this line are needed to determine m and b. One is initially (at $t=0$ the value is $\$ 42.3$ billion), and the second is a year later (at $t=1$ the value is $\$ 48.1$ billion).

$$
\begin{aligned}
42300000000 & =m(0)+b \\
48100000000 & =m(1)+b
\end{aligned}
$$

Solve this system of equations for m and b.

$$
\begin{aligned}
b & =42300000000 \\
m & =5800000000
\end{aligned}
$$

Therefore,

$$
S(t)=5800000000 t+42300000000
$$

Part (b)

The slope is $\$ 5.8$ billion dollars per year; this is the annual growth rate of online sales in 2013 with respect to 2012.

Part (c)

To find the time it takes to reach $\$ 60$ billion, plug in $S=60000000000$ and solve the equation for t.

$$
\begin{aligned}
& S(t)=5800000000 t+42300000000=60000000000 \\
& 5800000000 t=17700000000 \\
& t=\frac{177}{58} \approx 3.05 \text { years }
\end{aligned}
$$

